
CTIDH: Faster constant-time CSIDH

Gustavo Banegas Daniel J. Bernstein Fabio Campos
Tung Chou Tanja Lange Michael Meyer Benjamin Smith

Jana Sotáková

Affiliations and more at https://ctidh.isogeny.org/

April 5, 2022

1 / 37

CTIDH: Faster constant-time CSIDH
CSIDH [CLM+18]
is a post-quantum isogeny-based non-interactive key exchange protocol.
It uses a group action on a certain set of elliptic curves.
• Secret keys sampled from some keyspace sk 2 K give group elements,
• Public keys are elliptic curves obtained by evaluating the group action ?

pk = sk ? E

CTIDH
is a new keyspace and a new constant-time algorithm for the group action in CSIDH.
• constant-time claims verified using valgrind

• speedups compared to previous best work:
CSIDH-512: 438006 multiplications (best previous 789000)

125.53 million Skylake cycles (best previous more than 200 million).
2 / 37

CTIDH: Faster constant-time CSIDH
CSIDH [CLM+18]
is a post-quantum isogeny-based non-interactive key exchange protocol.
It uses a group action on a certain set of elliptic curves.
• Secret keys sampled from some keyspace sk 2 K give group elements,
• Public keys are elliptic curves obtained by evaluating the group action ?

pk = sk ? E

CTIDH
is a new keyspace and a new constant-time algorithm for the group action in CSIDH.
• constant-time claims verified using valgrind

• speedups compared to previous best work:
CSIDH-512: 438006 multiplications (best previous 789000)

125.53 million Skylake cycles (best previous more than 200 million).
3 / 37

Today

1. CSIDH and the group action

2. Constant-time evaluation

3. Atomic blocks

4. New Keyspace

5. New algorithm and Matryoshka Isogeny

4 / 37

Supersingular elliptic curves
Start with a prime p = 4 · (`1 · · · · · `n)� 1 with `1, . . . , `n distinct odd primes.

Supersingular elliptic curves in Montgomery form
E/Fp supersingular elliptic curve with equation

EA : y
2 = x

3 + Ax
2 + x ;

Set of elliptic curves E = {EA : y2 = x3 + Ax2 + x with p + 1 points over Fp}

Properties
X Abelian group with a algebraic group law,
X Montgomery form enables x-only arithmetic,
! The group structure

E(Fp) ⇠= Z/(p + 1)Z ⇠= Z/4 ⇥ Z/`1 ⇥ · · ·⇥ Z/`n

5 / 37

over #p

Supersingular elliptic curves
Start with a prime p = 4 · (`1 · · · · · `n)� 1 with `1, . . . , `n distinct odd primes.

Supersingular elliptic curves in Montgomery form
E/Fp supersingular elliptic curve with equation

EA : y
2 = x

3 + Ax
2 + x ;

Set of elliptic curves E = {EA : y2 = x3 + Ax2 + x with p + 1 points over Fp}

Properties
X Abelian group with a algebraic group law,
X Montgomery form enables x-only arithmetic,
! The group structure

E(Fp) ⇠= Z/(p + 1)Z ⇠= Z/4 ⇥ Z/`1 ⇥ · · ·⇥ Z/`n

6 / 37

Isogenies
Whenever have a point P 2 E(Fp) of order `, can construct an `-isogeny:
a morphism of elliptic curves

' : EA ! EA0

with kernel hPi.

Unraveling the definition
• ' is given by rational maps in the x , y of E with coefficient in Fp;
• ' is a group homomorphism: for all points Q and R we have

'(Q + R) = '(Q) + '(R)

• the kernel of ' is the subgroup of EA generated by P and has size `;
! the isogeny acts like a “power-`-map” on E(Fp):

if Q has order ` · N, then '(Q) has order N on EA0

7 / 37

Computing an isogeny from a point
Suppose P 2 E(Fp) is a point of order `. Want to compute the isogeny with kernel hPi:

' : EA ! EA0

Recipe
1. Collect the points {[i]P : i 2 S} for some index set S,
2. Compute the product

h(X) =
Y

i2S

(x � x([i]P)),

3. Recover A0 from h(X)

• Vélu’s formulas [Vél71] use S = {1, 2, . . . , `�1
2 };

cost 6` mult
• New

p
élu formulas [BDFLS20] use S = {1, 3, 5, . . . , `� 2}

cost Õ(
p
`) mult

8 / 37

CSIDH magic

Prime p = 4 · (`1 . . . `n)� 1,
set of elliptic curves E = {EA : y2 = x3 + Ax2 + x with p + 1 points}

Every SEC has a distinguished `i-isogeny
For every EA 2 E and every ` | p + 1, we can construct an `-isogeny ' : EA ! EA0 using
the points defined over Fp:

EA
// EA0

Claim
We have EA0 2 E .

9 / 37

Ea (Hp) T 24pA

Every li Allows us to jump from EA → Eat

Group action

Complex multiplication magic
There is a finite abelian group G with a group action on E with the following properties:
• the action E 7! g ? E is free and transitive action;

• for every `i | p + 1, there exists a group element gi such that if ' : EA ! EA0 is the
distinguished isogeny from before, then

gi ? EA = EA0

• It only matters how many times we step in a particular direction, not the order in
which we compute the isogenies.

10 / 37

EA
→ E

,
,

can find geG
And such g is unique

Exponent vectors

Going back with isogenies
For every curve in E and every `i | p + 1, we have one `i -isogeny going forward, but also
one going back:

EA

gi
// EA0

g
�1
i // EA

This isogeny also easy to compute.

Exponent vector
(e1, . . . , en) 2 Zn encodes how many times we perform each isogeny.

(e1, . . . , en) : EA0 =

nY

i=1

g
ei

i

!
? EA.

11 / 37

_

CSIDH key exchange

Diffie-Hellman flow
Alice and Bob agree on a starting curve E0 2 E :

1. Alice samples random exponent vector (ei); Bob samples (fi);

2. They compute action on E0 as EA =
�Q

g
ei

i

�
? E0 and EB =

⇣Q
g

fi

i

⌘
? E0;

3. Exchange public keys: EA,EB;
4. They compute action on the curve just received:

⇣Y
g

ei

i

⌘
? EB =

⇣Y
g

ei+fi

i

⌘
? E0 =

⇣Y
g

fi

i

⌘
? EA

12 / 37

Constant-time evaluation
Secret keys (e1, . . . , en) 2 Zn used to evaluate the action

EA0 =

nY

i=1

g
ei

i

!
? EA.

Every step is:
1. finding a point of order ` on some curve E 2 E ,
2. an `-isogeny computation from E .

Constant-time evaluation of the group action

If the input is a CSIDH curve and a private key, and the output is the result of the CSIDH
action, then the algorithm time provides no information about the private key, and
provides no information about the output.

13 / 37

← roughly the same time
← vein réñ Ge Eire)

Computing the group action

Computing one step
Simplified algorithm to compute the group action EA0 = gi ? EA as an `i -isogeny:

1. find a point P of order `i on EA:
1.1 generate a point T of order p + 1 on EA,

1.2 multiply P = [p+1
`i

]T .

2. Compute the `i -isogeny ' : EA ! EA0 with kernel P:
2.1 enumerate the multiples [i]P of the point P for i 2 S,

2.2 construct a polynomial h(X) =
Q

i2S
(X � x([i]P)),

2.3 Compute the coefficient A0 from h(X).

14 / 37

prszsth
→ order li ttllogzt M

]VHu formulas
561M

340=587

Amortize the cost
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute `i -isogenies for `1 = 3 and `2 = 5 and `3 = 7:

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1
3·5·7

i
T has exact order ___

2. Compute the isogenies:
2.1 3-isogeny:

2.1.1 Compute P1 = [5 · 7]T1 has order ___
2.1.2 Use P1 to construct 3-isogeny '1,
2.1.3 Point T2 = '1(T1) has order ___ on the new curve,

2.2 5-isogeny:
2.2.1 Compute P2 = [7]T2 has order ___,
2.2.2 Construct 5-isogeny '2 with kernel P2,
2.2.3 The point T3 = '2(T2) has order ___ on the new curve,

2.3 7-isogeny: construct the isogeny '3 with kernel P3 = T3 which has order ___
15 / 37

Amortize the cost
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute `i -isogenies for `1 = 3 and `2 = 5 and `3 = 7:

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1
3·5·7

i
T has exact order ___

2. Compute the isogenies:
2.1 3-isogeny:

2.1.1 Compute P1 = [5 · 7]T1 has order ___
2.1.2 Use P1 to construct 3-isogeny '1,
2.1.3 Point T2 = '1(T1) has order ___ on the new curve,

2.2 5-isogeny:
2.2.1 Compute P2 = [7]T2 has order ___,
2.2.2 Construct 5-isogeny '2 with kernel P2,
2.2.3 The point T3 = '2(T2) has order ___ on the new curve,

2.3 7-isogeny: construct the isogeny '3 with kernel P3 = T3 which has order ___
16 / 37

p-11=413.57
.

. . .
)

3- 5- 7

3

57

5

7

7-

Towards atomic blocks
Exponent vector (1, 0, 1, 0, . . . , 0)
We compute `i -isogenies for `1 = 3 and `3 = 7 but no 5-isogeny:

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1
3·5·7

i
T has exact order 3 · 5 · 7,

2. Compute the isogenies:
2.1 3-isogeny:

2.1.1 Compute P1 = [5 · 7]T1 has order 3,
2.1.2 Use P1 to construct 3-isogeny '1,
2.1.3 Point T2 = '1(T1) has order 5 · 7 on the new curve,

2.2 No 5-isogeny:
2.2.1 Compute the isogeny as before but throw away the results,
2.2.2 Adjust to code to always compute [5]T2,
2.2.3 The point T3 = [5]T2 has order 7 on the same curve,

2.3 7-isogeny: construct the isogeny '3 with kernel P3 = T3.
17 / 37

Atomic blocks

Definition (Atomic Blocks, simplified)
Let I ⇢ {1, . . . , n} be a subset of indices of size k , write I = (i1, . . . , ik).
An atomic block of length k is a probabilistic algorithm ↵I :
• taking inputs A and ✏ 2 {0, 1}k ,
• returning A0 2 Fp such that EA0 = (

Q
k

j=1 g
✏j

ij
) ? EA,

• the time distribution of ↵I is independent of ✏.

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block ↵I with I = (1, 2, 3) that computes

EA0 = g
✏1
1 g

✏2
2 g

✏3
3 ? EA

for (✏1, ✏2, ✏3) 2 {0, 1}3 without leaking timing information about (✏1, ✏2, ✏3).

18 / 37

Why atomic blocks?

Definition (Atomic Blocks, simplified)
Let I ⇢ {1, . . . , n} be a subset of indices of size k , write I = (i1, . . . , ik).
An atomic block of length k is a probabilistic algorithm ↵I :
• taking inputs A and ✏ 2 {0, 1}k ,
• returning A0 2 Fp such that EA0 = (

Q
k

j=1 g
✏j

ij
) ? EA,

• the time distribution of ↵I is independent of ✏.

Because:
1. Previous CSIDH implementations are using atomic blocks implicitly;

2. Simpler framework to compute the group action:
2.1 split the computation into atomic blocks independent of the secret;
2.2 make sure each atomic block is constant-time.

19 / 37

Keyspace

Goal
For (e1, . . . , en) 2 Zn, evaluate the group action

EA0 =

nY

i=1

g
ei

i

!
? EA.

• Exponent vectors (e1, . . . , en) sampled from some keyspace K ⇢ Zn;

• Large enough keyspace: #K ⇡ 2256;

Examples of keyspaces
1. Original CSIDH [CLM+18]: |ei | m for all i with (2m + 1)n ⇡ 2256,
2. [MCR19] use 0 ei 10 for CSIDH-512;
3. [CDRH20] allow the mi to vary for efficiency.

20 / 37

Batching

Take CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587)� 1.

The batching idea
Consider exponent vector

primes 3 5 7 11 13 17 19 23 29 31 . . .
exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .

21 / 37

lehnert-11131<-3 leakiest -1141<-5

New key space

Batching Keyspace
For B batches: For N 2 ZB

>0 and m 2 ZB
�0, we define

KN,m :=
�
(e1, . . . , en) 2 Zn |

PNi

j=1 |ei,j | mi for 1 i B

.

Comparison for 6 primes

22 / 37

(e, .lv/ezlu,lsilf)
(2,213,3>3,37

Osei willing toconpuseezmp.am#ozo-.noOYik-Mimabesiemyaahways
53in Baton

⑥ compute the same
Oseitezte, 33 → 20 # ofisogaies

Atomic blocks for batches

Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one
5-isogeny and one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .)

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1

(3·5·7)(11·13·17)

i
T has order (3 · 5 · 7)(11 · 13 · 17).

2. Compute the isogenies:
2.1 {3, 5, 7}-isogeny:

2.1.1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2.1.2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny '1,
2.1.3 Point T2 = [3 · 7]'1(T1) has order 11 · 13 · 17 on the new curve,

2.2 {11, 13, 17}-isogeny:
2.2.1 Compute P2 = [13 · 17]T2 has order 11,
2.2.2 Construct 11-isogeny '2 with kernel P2.

23 / 37

Atomic blocks for batches

Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one
5-isogeny and one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .)

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1

(3·5·7)(11·13·17)

i
T has order (3 · 5 · 7)(11 · 13 · 17).

2. Compute the isogenies:
2.1 {3, 5, 7}-isogeny:

2.1.1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2.1.2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny '1,
2.1.3 Point T2 = [3 · 7]'1(T1) has order 11 · 13 · 17 on the new curve,

2.2 {11, 13, 17}-isogeny:
2.2.1 Compute P2 = [13 · 17]T2 has order 11,
2.2.2 Construct 11-isogeny '2 with kernel P2.

24 / 37

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch {11, 13, 17}
Compute the 11-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5}

2. construct h(X) =
Q5

i=1(x � x([i]P)),

3. Compute the coefficient A0 from h(X).

25 / 37

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch {11, 13, 17}
Compute the ⇢⇢11 13-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5, 6}

2. construct h(X) =
Q5

i=1(x � x([i]P)) · (x � x([6]P)),

3. Compute the coefficient A0 from h(X).

26 / 37

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch {11, 13, 17}
Compute the ⇢⇢11⇢⇢13 17-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5, 6, 7, 8}

2. construct h(X) =
Q5

i=1(x � x([i]P)) · (x � x([6]P)) · (x � x([7]P))(x � x([8]P)),

3. Compute the coefficient A0 from h(X).

27 / 37

Matryoshka isogenies

Matryoshka isogeny
• Compute the isogeny for any prime in the batch with the same code
• at the cost of computing isogeny for the largest prime,
• requires using dummy computations.

Known for Vélu formulas [BLMP19].
New for

p
élu from [BDFLS20], newly used for batching.

28 / 37

Matryoshka for p
élu

The
p
élu polynomial

Want to evaluate
h(X) =

Y

i2S

(x � x([i]P)),

for S = {1, 3, . . . , `� 2}

Visual explanation for 29 and 31

1 9 17 25
3 11 19 27
5 13 21
7 15 23

29 / 37

Selection of the parameters

Evaluation cost function
Greedy algorithm to find efficient batching:
• For every batch configuration (number

of batches, bounds of each batch), we
can estimate the cost of the group
action evaluation.

• Adaptively change batch configuration
to find one with smaller cost (and
large enough keyspace).

batch size primes bound
1 2 3, 5 10
2 3 7, 11, 13 14
3 4 17, 19, 23, 29 16
4 4 31, 37, 41, 43 17
5 5 47, 53, 59, 61, 67 17
6 5 71, 73, 79, 83, 89 17
7 6 97, 101, 103, 107, 109, 113 18
8 7 127, 131, 137, 139, 149, 151, 157 18
9 7 163, 167, 173, 179, 181, 191, 193 18
10 8 197, 199, 211, 223, 227, 229, 233, 239 18
11 8 241, 251, 257, 263, 269, 271, 277, 281 18
12 6 283, 293, 307, 311, 313, 317 13
13 8 331, 337, 347, 349, 353, 359, 367, 373 13
14 1 587 1

30 / 37

valgrind constant time verification

Valgrind
Checking for constant-time
• We “poison” the secret data: declare undefined;
• valgrind will check if the undefined data corrupts branches or indices.

31 / 37

Speedups, comparison to previous works
pub priv DH Mcyc M S a 1, 1, 0 1, 0.8, 0.05
512 220 1 89.11 228780 82165 346798 310945 311852 new
512 220 1 190.92 447000 128000 626000 575000 580700 [CCJR20]
512 220 2 93.23 238538 87154 361964 325692 326359 new
512 256 1 125.53 321207 116798 482311 438006 438762 new
512 256 1 — 624000 165000 893000 789000 800650 [ACR20]
512 256 2 129.64 330966 121787 497476 452752 453269 new
512 256 2 218.42 665876 189377 691231 855253 851939 [CDRH20]
512 256 2 238.51 632444 209310 704576 841754 835121 [HLKA20]
512 256 2 239.00 657000 210000 691000 867000 859550 [CCC+19]
512 256 2 — 732966 243838 680801 976804 962076 [OAYT19]
512 256 2 395.00 1054000 410000 1053000 1464000 1434650 [MCR19]

1024 256 1 469.52 287739 87944 486764 375683 382432 new
1024 256 1 — 552000 133000 924000 685000 704600 [ACR20]
1024 256 2 511.19 310154 99371 521400 409525 415721 new

Table: pub: size of p; priv: size of the keyspace; DH 1: group action evaluation, DH 2: group action
evaluation and public key validation; Mcyc millions of cycles on a 3GHz Intel Xeon E3-1220 v5 (Skylake)
CPU with Turbo Boost disabled; “M” multiplications; “S” squarings; “a” additions; “1, 1, 0” and “1, 0.8, 0.05”
combinations of M, S, and a.

32 / 37

Summary

CTIDH
• New keyspace for CSIDH,
• New constant-time algorithm to evaluate the group action in CSIDH,
• Formalization of atomic blocks to compute the isogeny group action,
• constant-time verification using valgrind,
• speed records,

Find the article and the code at

https://ctidh.isogeny.org/

33 / 37

References I

Gora Adj, Jesús-Javier Chi-Domı́nguez, and Francisco Rodrı́guez-Henrı́quez.
On new Vélu’s formulae and their applications to CSIDH and B-SIDH constant-time
implementations, 2020.
https://eprint.iacr.org/2020/1109.

Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree, 2020.
https://eprint.iacr.org/2020/341.

Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies, 2019.
https://eprint.iacr.org/2018/1059.

34 / 37

References II

Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca De
Feo, Francisco Rodrı́guez-Henrı́quez, and Benjamin Smith.
Stronger and faster side-channel protections for CSIDH, 2019.
https://eprint.iacr.org/2019/837.

Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel Jaques, and Francisco
Rodrı́guez-Henrı́quez.
The SQALE of CSIDH: square-root Vélu quantum-resistant isogeny action with low
exponents, 2020.
https://eprint.iacr.org/2020/1520.

Jesús-Javier Chi-Domı́nguez and Francisco Rodrı́guez-Henrı́quez.
Optimal strategies for CSIDH, 2020.
https://eprint.iacr.org/2020/417.

35 / 37

References III

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action, 2018.
https://eprint.iacr.org/2018/383.

Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh.
Further optimizations of CSIDH: A systematic approach to efficient strategies,
permutations, and bound vectors, 2020.
https://eprint.iacr.org/2019/1121.

Michael Meyer, Fabio Campos, and Steffen Reith.
On Lions and Elligators: An efficient constant-time implementation of CSIDH, 2019.
https://eprint.iacr.org/2018/1198.

Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi.
(Short paper) A faster constant-time algorithm of CSIDH keeping two points, 2019.
https://eprint.iacr.org/2019/353.

36 / 37

References IV

Jacques Vélu.
Isogénies entre courbes elliptiques, 1971.
https://gallica.bnf.fr/ark:/12148/cb34416987n/date.

37 / 37

