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CTIDH: Faster constant-time CSIDH
CSIDH [CLM+18]
is a post-quantum isogeny-based non-interactive key exchange protocol.
It uses a group action on a certain set of elliptic curves.
• Secret keys sampled from some keyspace sk 2 K give group elements,
• Public keys are elliptic curves obtained by evaluating the group action ?

pk = sk ? E

CTIDH
is a new keyspace and a new constant-time algorithm for the group action in CSIDH.
• constant-time claims verified using valgrind

• speedups compared to previous best work:
CSIDH-512: 438006 multiplications (best previous 789000)

125.53 million Skylake cycles (best previous more than 200 million).
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Today

1. CSIDH and the group action

2. Constant-time evaluation

3. Atomic blocks

4. New Keyspace

5. New algorithm and Matryoshka Isogeny
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Supersingular elliptic curves
Start with a prime p = 4 · (`1 · · · · · `n)� 1 with `1, . . . , `n distinct odd primes.

Supersingular elliptic curves in Montgomery form
E/Fp supersingular elliptic curve with equation

EA : y
2 = x

3 + Ax
2 + x ;

Set of elliptic curves E = {EA : y2 = x3 + Ax2 + x with p + 1 points over Fp}

Properties
X Abelian group with a algebraic group law,
X Montgomery form enables x-only arithmetic,
! The group structure

E(Fp) ⇠= Z/(p + 1)Z ⇠= Z/4 ⇥ Z/`1 ⇥ · · ·⇥ Z/`n
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Isogenies
Whenever have a point P 2 E(Fp) of order `, can construct an `-isogeny:
a morphism of elliptic curves

' : EA ! EA0

with kernel hPi.

Unraveling the definition
• ' is given by rational maps in the x , y of E with coefficient in Fp;
• ' is a group homomorphism: for all points Q and R we have

'(Q + R) = '(Q) + '(R)

• the kernel of ' is the subgroup of EA generated by P and has size `;
! the isogeny acts like a “power-`-map” on E(Fp):

if Q has order ` · N, then '(Q) has order N on EA0
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Computing an isogeny from a point
Suppose P 2 E(Fp) is a point of order `. Want to compute the isogeny with kernel hPi:

' : EA ! EA0

Recipe
1. Collect the points {[i]P : i 2 S} for some index set S,
2. Compute the product

h(X ) =
Y

i2S

(x � x([i]P)),

3. Recover A0 from h(X )

• Vélu’s formulas [Vél71] use S = {1, 2, . . . , `�1
2 };

cost 6` mult
• New

p
élu formulas [BDFLS20] use S = {1, 3, 5, . . . , `� 2}

cost Õ(
p
`) mult
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CSIDH magic

Prime p = 4 · (`1 . . . `n)� 1,
set of elliptic curves E = {EA : y2 = x3 + Ax2 + x with p + 1 points}

Every SEC has a distinguished `i-isogeny
For every EA 2 E and every ` | p + 1, we can construct an `-isogeny ' : EA ! EA0 using
the points defined over Fp:

EA
// EA0

Claim
We have EA0 2 E .
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Group action

Complex multiplication magic
There is a finite abelian group G with a group action on E with the following properties:
• the action E 7! g ? E is free and transitive action;

• for every `i | p + 1, there exists a group element gi such that if ' : EA ! EA0 is the
distinguished isogeny from before, then

gi ? EA = EA0

• It only matters how many times we step in a particular direction, not the order in
which we compute the isogenies.

10 / 37

EA
→ E

,
,

can find geG
And such g is unique



Exponent vectors

Going back with isogenies
For every curve in E and every `i | p + 1, we have one `i -isogeny going forward, but also
one going back:

EA

gi
// EA0

g
�1
i // EA

This isogeny also easy to compute.

Exponent vector
(e1, . . . , en) 2 Zn encodes how many times we perform each isogeny.

(e1, . . . , en) : EA0 =

 
nY

i=1

g
ei

i

!
? EA.
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CSIDH key exchange

Diffie-Hellman flow
Alice and Bob agree on a starting curve E0 2 E :

1. Alice samples random exponent vector (ei); Bob samples (fi);

2. They compute action on E0 as EA =
�Q

g
ei

i

�
? E0 and EB =

⇣Q
g

fi

i

⌘
? E0;

3. Exchange public keys: EA,EB;
4. They compute action on the curve just received:

⇣Y
g

ei

i

⌘
? EB =

⇣Y
g

ei+fi

i

⌘
? E0 =

⇣Y
g

fi

i

⌘
? EA
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Constant-time evaluation
Secret keys (e1, . . . , en) 2 Zn used to evaluate the action

EA0 =

 
nY

i=1

g
ei

i

!
? EA.

Every step is:
1. finding a point of order ` on some curve E 2 E ,
2. an `-isogeny computation from E .

Constant-time evaluation of the group action

If the input is a CSIDH curve and a private key, and the output is the result of the CSIDH
action, then the algorithm time provides no information about the private key, and
provides no information about the output.
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Computing the group action

Computing one step
Simplified algorithm to compute the group action EA0 = gi ? EA as an `i -isogeny:

1. find a point P of order `i on EA:
1.1 generate a point T of order p + 1 on EA,

1.2 multiply P = [ p+1
`i

]T .

2. Compute the `i -isogeny ' : EA ! EA0 with kernel P:
2.1 enumerate the multiples [i]P of the point P for i 2 S,

2.2 construct a polynomial h(X ) =
Q

i2S
(X � x([i]P)),

2.3 Compute the coefficient A0 from h(X ).
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Amortize the cost
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute `i -isogenies for `1 = 3 and `2 = 5 and `3 = 7:

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1
3·5·7

i
T has exact order ___

2. Compute the isogenies:
2.1 3-isogeny:

2.1.1 Compute P1 = [5 · 7]T1 has order ___
2.1.2 Use P1 to construct 3-isogeny '1,
2.1.3 Point T2 = '1(T1) has order ___ on the new curve,

2.2 5-isogeny:
2.2.1 Compute P2 = [7]T2 has order ___,
2.2.2 Construct 5-isogeny '2 with kernel P2,
2.2.3 The point T3 = '2(T2) has order ___ on the new curve,

2.3 7-isogeny: construct the isogeny '3 with kernel P3 = T3 which has order ___
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Towards atomic blocks
Exponent vector (1, 0, 1, 0, . . . , 0)
We compute `i -isogenies for `1 = 3 and `3 = 7 but no 5-isogeny:

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1
3·5·7

i
T has exact order 3 · 5 · 7,

2. Compute the isogenies:
2.1 3-isogeny:

2.1.1 Compute P1 = [5 · 7]T1 has order 3,
2.1.2 Use P1 to construct 3-isogeny '1,
2.1.3 Point T2 = '1(T1) has order 5 · 7 on the new curve,

2.2 No 5-isogeny:
2.2.1 Compute the isogeny as before but throw away the results,
2.2.2 Adjust to code to always compute [5]T2,
2.2.3 The point T3 = [5]T2 has order 7 on the same curve,

2.3 7-isogeny: construct the isogeny '3 with kernel P3 = T3.
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Atomic blocks

Definition (Atomic Blocks, simplified)
Let I ⇢ {1, . . . , n} be a subset of indices of size k , write I = (i1, . . . , ik ).
An atomic block of length k is a probabilistic algorithm ↵I :
• taking inputs A and ✏ 2 {0, 1}k ,
• returning A0 2 Fp such that EA0 = (

Q
k

j=1 g
✏j

ij
) ? EA,

• the time distribution of ↵I is independent of ✏.

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block ↵I with I = (1, 2, 3) that computes

EA0 = g
✏1
1 g

✏2
2 g

✏3
3 ? EA

for (✏1, ✏2, ✏3) 2 {0, 1}3 without leaking timing information about (✏1, ✏2, ✏3).
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Why atomic blocks?

Definition (Atomic Blocks, simplified)
Let I ⇢ {1, . . . , n} be a subset of indices of size k , write I = (i1, . . . , ik ).
An atomic block of length k is a probabilistic algorithm ↵I :
• taking inputs A and ✏ 2 {0, 1}k ,
• returning A0 2 Fp such that EA0 = (

Q
k

j=1 g
✏j

ij
) ? EA,

• the time distribution of ↵I is independent of ✏.

Because:
1. Previous CSIDH implementations are using atomic blocks implicitly;

2. Simpler framework to compute the group action:
2.1 split the computation into atomic blocks independent of the secret;
2.2 make sure each atomic block is constant-time.
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Keyspace

Goal
For (e1, . . . , en) 2 Zn, evaluate the group action

EA0 =

 
nY

i=1

g
ei

i

!
? EA.

• Exponent vectors (e1, . . . , en) sampled from some keyspace K ⇢ Zn;

• Large enough keyspace: #K ⇡ 2256;

Examples of keyspaces
1. Original CSIDH [CLM+18]: |ei |  m for all i with (2m + 1)n ⇡ 2256,
2. [MCR19] use 0  ei  10 for CSIDH-512;
3. [CDRH20] allow the mi to vary for efficiency.
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Batching

Take CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587)� 1.

The batching idea
Consider exponent vector

primes 3 5 7 11 13 17 19 23 29 31 . . .
exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
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New key space

Batching Keyspace
For B batches: For N 2 ZB

>0 and m 2 ZB
�0, we define

KN,m :=
�
(e1, . . . , en) 2 Zn |

PNi

j=1 |ei,j |  mi for 1  i  B
 
.

Comparison for 6 primes
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Atomic blocks for batches

Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one
5-isogeny and one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . . )

1. Find a suitable point:
1.1 Generate a random point T of order p + 1,
1.2 Compute T1 =

h
p+1

(3·5·7)(11·13·17)

i
T has order (3 · 5 · 7)(11 · 13 · 17).

2. Compute the isogenies:
2.1 {3, 5, 7}-isogeny:

2.1.1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2.1.2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny '1,
2.1.3 Point T2 = [3 · 7]'1(T1) has order 11 · 13 · 17 on the new curve,

2.2 {11, 13, 17}-isogeny:
2.2.1 Compute P2 = [13 · 17]T2 has order 11,
2.2.2 Construct 11-isogeny '2 with kernel P2.
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Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch {11, 13, 17}
Compute the 11-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5}

2. construct h(X ) =
Q5

i=1(x � x([i]P)),

3. Compute the coefficient A0 from h(X ).

25 / 37



Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:
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Compute the ⇢⇢11 13-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5, 6}

2. construct h(X ) =
Q5
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Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch {11, 13, 17}
Compute the ⇢⇢11⇢⇢13 17-isogeny

1. enumerate the multiples [i]P of the point P for i 2 S,
with S = {1, 2, . . . , 5, 6, 7, 8}

2. construct h(X ) =
Q5

i=1(x � x([i]P)) · (x � x([6]P)) · (x � x([7]P))(x � x([8]P)),

3. Compute the coefficient A0 from h(X ).
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Matryoshka isogenies

Matryoshka isogeny
• Compute the isogeny for any prime in the batch with the same code
• at the cost of computing isogeny for the largest prime,
• requires using dummy computations.

Known for Vélu formulas [BLMP19].
New for

p
élu from [BDFLS20], newly used for batching.
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Matryoshka for p
élu

The
p
élu polynomial

Want to evaluate
h(X ) =

Y

i2S

(x � x([i]P)),

for S = {1, 3, . . . , `� 2}

Visual explanation for 29 and 31

1 9 17 25
3 11 19 27
5 13 21
7 15 23
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Selection of the parameters

Evaluation cost function
Greedy algorithm to find efficient batching:
• For every batch configuration (number

of batches, bounds of each batch), we
can estimate the cost of the group
action evaluation.

• Adaptively change batch configuration
to find one with smaller cost (and
large enough keyspace).

batch size primes bound
1 2 3, 5 10
2 3 7, 11, 13 14
3 4 17, 19, 23, 29 16
4 4 31, 37, 41, 43 17
5 5 47, 53, 59, 61, 67 17
6 5 71, 73, 79, 83, 89 17
7 6 97, 101, 103, 107, 109, 113 18
8 7 127, 131, 137, 139, 149, 151, 157 18
9 7 163, 167, 173, 179, 181, 191, 193 18
10 8 197, 199, 211, 223, 227, 229, 233, 239 18
11 8 241, 251, 257, 263, 269, 271, 277, 281 18
12 6 283, 293, 307, 311, 313, 317 13
13 8 331, 337, 347, 349, 353, 359, 367, 373 13
14 1 587 1
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valgrind constant time verification

Valgrind
Checking for constant-time
• We “poison” the secret data: declare undefined;
• valgrind will check if the undefined data corrupts branches or indices.
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Speedups, comparison to previous works
pub priv DH Mcyc M S a 1, 1, 0 1, 0.8, 0.05
512 220 1 89.11 228780 82165 346798 310945 311852 new
512 220 1 190.92 447000 128000 626000 575000 580700 [CCJR20]
512 220 2 93.23 238538 87154 361964 325692 326359 new
512 256 1 125.53 321207 116798 482311 438006 438762 new
512 256 1 — 624000 165000 893000 789000 800650 [ACR20]
512 256 2 129.64 330966 121787 497476 452752 453269 new
512 256 2 218.42 665876 189377 691231 855253 851939 [CDRH20]
512 256 2 238.51 632444 209310 704576 841754 835121 [HLKA20]
512 256 2 239.00 657000 210000 691000 867000 859550 [CCC+19]
512 256 2 — 732966 243838 680801 976804 962076 [OAYT19]
512 256 2 395.00 1054000 410000 1053000 1464000 1434650 [MCR19]

1024 256 1 469.52 287739 87944 486764 375683 382432 new
1024 256 1 — 552000 133000 924000 685000 704600 [ACR20]
1024 256 2 511.19 310154 99371 521400 409525 415721 new

Table: pub: size of p; priv: size of the keyspace; DH 1: group action evaluation, DH 2: group action
evaluation and public key validation; Mcyc millions of cycles on a 3GHz Intel Xeon E3-1220 v5 (Skylake)
CPU with Turbo Boost disabled; “M” multiplications; “S” squarings; “a” additions; “1, 1, 0” and “1, 0.8, 0.05”
combinations of M, S, and a.
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Summary

CTIDH
• New keyspace for CSIDH,
• New constant-time algorithm to evaluate the group action in CSIDH,
• Formalization of atomic blocks to compute the isogeny group action,
• constant-time verification using valgrind,
• speed records,

Find the article and the code at

https://ctidh.isogeny.org/
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