CTIDH: Faster constant-time CSIDH

Gustavo Banegas Daniel J. Bernstein Fabio Campos Tung Chou Tanja Lange Michael Meyer Benjamin Smith Jana Sotáková

Affiliations and more at https://ctidh.isogeny.org/

April 5, 2022

CTIDH: Faster constant-time CSIDH

CSIDH [CLM $\left.{ }^{+} 18\right]$

is a post-quantum isogeny-based non-interactive key exchange protocol.
It uses a group action on a certain set of elliptic curves.

- Secret keys sampled from some keyspace sk $\in \mathcal{K}$ give group elements,
- Public keys are elliptic curves obtained by evaluating the group action \star

$$
\mathrm{pk}=\mathrm{sk} \star \mathrm{E}
$$

is a new keyspace and a new constant-time algorithm for the group action in CSIDH.

- constant-time claims verified using
- speedups compared to previous best work:

438006 multiplications (best previous 789000)
125.53 million Skylake cycles (best previous more than 200 million)

CTIDH: Faster constant-time CSIDH

CSIDH [CLM $\left.{ }^{+} 18\right]$

is a post-quantum isogeny-based non-interactive key exchange protocol.
It uses a group action on a certain set of elliptic curves.

- Secret keys sampled from some keyspace sk $\in \mathcal{K}$ give group elements,
- Public keys are elliptic curves obtained by evaluating the group action \star

$$
\mathrm{pk}=\mathrm{sk} \star \mathrm{E}
$$

CTIDH

is a new keyspace and a new constant-time algorithm for the group action in CSIDH.

- constant-time claims verified using valgrind
- speedups compared to previous best work:

CSIDH-512: 438006 multiplications (best previous 789000)
125.53 million Skylake cycles (best previous more than 200 million).

Today

1. CSIDH and the group action
2. Constant-time evaluation
3. Atomic blocks
4. New Keyspace
5. New algorithm and Matryoshka Isogeny

Supersingular elliptic curves

Start with a prime $p=4 \cdot\left(\ell_{1} \cdots \cdots \ell_{n}\right)-1$ with $\ell_{1}, \ldots, \ell_{n}$ distinct odd primes.
Supersingular elliptic curves in Montgomery form
E / \mathbb{F}_{p} supersingular elliptic curve with equation

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x ;
$$

Set of elliptic curves $\mathcal{E}=\left\{E_{A}: y^{2}=x^{3}+A x^{2}+x\right.$ with $p+1$ points over $\left.\mathbb{F}_{p}\right\}$

Properties

Abelian group with a algebraic group law,
Montgomery form enables x-only arithmetic
The group structure

Supersingular elliptic curves

Start with a prime $p=4 \cdot\left(\ell_{1} \cdots \cdots \ell_{n}\right)-1$ with $\ell_{1}, \ldots, \ell_{n}$ distinct odd primes.
Supersingular elliptic curves in Montgomery form
E / \mathbb{F}_{p} supersingular elliptic curve with equation

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

Set of elliptic curves $\mathcal{E}=\left\{E_{A}: y^{2}=x^{3}+A x^{2}+x\right.$ with $p+1$ points over $\left.\mathbb{F}_{p}\right\}$

Properties

\checkmark Abelian group with a algebraic group law,
\checkmark Montgomery form enables x-only arithmetic,
! The group structure

$$
E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1) \mathbb{Z} \cong \mathbb{Z} / 4 \times \mathbb{Z} / \ell_{1} \times \cdots \times \mathbb{Z} / \ell_{n}
$$

Isogenies

Whenever have a point $P \in E\left(\mathbb{F}_{p}\right)$ of order ℓ, can construct an ℓ-isogeny: a morphism of elliptic curves

$$
\varphi: E_{A} \rightarrow E_{A^{\prime}}
$$

with kernel $\langle P\rangle$.

Unraveling the definition

- φ is given by rational maps in the x, y of E with coefficient in \mathbb{F}_{p};
- φ is a group homomorphism: for all points Q and R we have

$$
\varphi(Q+R)=\varphi(Q)+\varphi(R)
$$

- the kernel of φ is the subgroup of E_{A} generated by P and has size ℓ;
! the isogeny acts like a "power- ℓ-map" on $E\left(\mathbb{F}_{p}\right)$: if Q has order $\ell \cdot N$, then $\varphi(Q)$ has order N on $E_{A^{\prime}}$

Computing an isogeny from a point

Suppose $P \in E\left(\mathbb{F}_{p}\right)$ is a point of order ℓ. Want to compute the isogeny with kernel $\langle P\rangle$:

$$
\varphi: E_{A} \rightarrow E_{A^{\prime}}
$$

Recipe

1. Collect the points $\{[i] P: i \in S\}$ for some index set S,
2. Compute the product

$$
h(X)=\prod_{i \in S}(x-x([i] P)),
$$

3. Recover A^{\prime} from $h(X)$

- Vélu's formulas [Vél71] use $S=\left\{1,2, \ldots, \frac{\ell-1}{2}\right\}$;
cost 6ℓ mult
- New Vélu formulas [BDFLS20] use $S=\{1,3,5, \ldots, \ell-2\}$

CSIDH magic

Prime $p=4 \cdot\left(\ell_{1} \ldots \ell_{n}\right)-1$,

$$
E_{A}\left(F_{p}\right) \simeq \mathbb{Z} / p+1
$$

set of elliptic curves $\mathcal{E}=\left\{E_{A}: y^{2}=x^{3}+A x^{2}+x\right.$ with $p+1$ points $\}$

Every SEC has a distinguished ℓ_{i}-isogeny

For every $E_{A} \in \mathcal{E}$ and every $\ell \mid p+1$, we can construct an ℓ-isogeny $\varphi: E_{A} \rightarrow E_{A^{\prime}}$ using the points defined over \mathbb{F}_{p} :

$$
E_{A} \longrightarrow E_{A^{\prime}}
$$

Claim

We have $E_{A^{\prime}} \in \mathcal{E}$.

$$
\text { Gory li allows we to jurisp from } E_{A} \curvearrowright E_{A^{\prime}}
$$

Group action

Complex multiplication magic

There is a finite abelian group G with a group action on \mathcal{E} with the following properties:

- the action $E \mapsto g \star E$ is free and transitive action;

- for every $\ell_{i} \mid p+1$, there exists a group element g_{i} such that if $\varphi: E_{A} \rightarrow E_{A^{\prime}}$ is the distinguished isogeny from before, then

$$
g_{i} \star E_{A}=E_{A^{\prime}}
$$

- It only matters how many times we step in a particular direction, not the order in which we compute the isogenies.

Exponent vectors

Going back with isogenies

For every curve in \mathcal{E} and every $\ell_{i} \mid p+1$, we have one ℓ_{i}-isogeny going forward, but also one going back:

$$
E_{A} \xrightarrow{g_{i}}{\underset{\sim}{A^{\prime}}}^{g_{i}^{-1}} E_{A}
$$

This isogeny also easy to compute.

Exponent vector

$\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$ encodes how many times we perform each isogeny.

$$
\left(e_{1}, \ldots, e_{n}\right): \quad E_{A^{\prime}}=\left(\prod_{i=1}^{n} g_{i}^{e_{i}}\right) \star E_{A} .
$$

CSIDH key exchange

Diffie-Hellman flow

Alice and Bob agree on a starting curve $E_{0} \in \mathcal{E}$:

1. Alice samples random exponent vector (e_{i}); Bob samples (f_{i});
2. They compute action on E_{0} as $E_{A}=\left(\Pi g_{i}^{e_{i}}\right) \star E_{0}$ and $E_{B}=\left(\Pi g_{i}^{t_{i}}\right) \star E_{0}$;
3. Exchange public keys: E_{A}, E_{B};
4. They compute action on the curve just received:

$$
\left(\prod g_{i}^{e_{i}}\right) \star E_{B}=\left(\prod g_{i}^{e_{i}+f_{i}}\right) \star E_{0}=\left(\prod g_{i}^{t_{i}}\right) \star E_{A}
$$

Constant-time evaluation

Secret keys $\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$ used to evaluate the action

$$
E_{A^{\prime}}=\left(\prod_{i=1}^{n} g_{i}^{e_{i}}\right) \star E_{A}
$$

Every step is:

1. finding a point of order ℓ on some curve $E \in \mathcal{E}$, 〔rougity the sation timu
2. an ℓ-isogeny computation from E.

Constant-time evaluation of the group action

If the input is a CSIDH curve and a private key, and the output is the result of the CSIDH action, then the algorithm time provides no information about the private key, and provides no information about the output.

Computing the group action

Computing one step

Simplified algorithm to compute the group action $E_{A^{\prime}}=g_{i} \star E_{A}$ as an ℓ_{i}-isogeny:

1. find a point P of order ℓ_{i} on E_{A} :
1.1 generate a point T of order $p+1$ on E_{A},
1.2 multiply $P=\left[\frac{p+1}{\ell_{i}}\right] T . \rightarrow$ order $l . \approx 1 \mid \log _{2} \neq M$
2. Compute the ℓ_{i}-isogeny $\varphi: E_{A} \rightarrow E_{A^{\prime}}$ with kernel P :
2.1 enumerate the multiples $[i] P$ of the point P for $i \in S$,
2.2 construct a polynomial $h(X)=\prod_{i \in S}(X-x([i] P))$,
2.3 Compute the coefficient A^{\prime} from $h(X)$.

Weller frimuas
$\leqslant 687$

Amortize the cost

Exponent vector $(1,1,1,0, \ldots, 0)$

We compute ℓ_{i}-isogenies for $\ell_{1}=3$ and $\ell_{2}=5$ and $\ell_{3}=7$:

```
Find a suitable point:
1.1 Generate a random point T of order p+1
1.2 Compute }\mp@subsup{T}{1}{}=[\frac{p+1}{3.7}\rceilT\mathrm{ has exact order
Compute the isogenies
2.1 3-isogeny
    Compute P}\mp@subsup{P}{1}{}=[5\cdot7]T\mp@subsup{T}{1}{}\mathrm{ has order
    Use P}\mp@subsup{P}{1}{}\mathrm{ to construct 3-isogeny
    Point }\mp@subsup{T}{2}{}=\mp@subsup{\varphi}{1}{}(\mp@subsup{T}{1}{})\mathrm{ has order___ on the new curve,
2.2 5-isogeny:
    2.2.1 Compute }\mp@subsup{P}{2}{}=[7]\mp@subsup{T}{2}{}\mathrm{ has order
    2.2.2 Construct 5-isogeny }\mp@subsup{\varphi}{2}{}\mathrm{ with kernel }\mp@subsup{P}{2}{
    2.2.3 The point }\mp@subsup{T}{3}{}=\mp@subsup{\varphi}{2}{}(\mp@subsup{T}{2}{})\mathrm{ has order___on the new curve,
2.3 7-isogeny: construct the isogeny }\mp@subsup{\varphi}{3}{}\mathrm{ with kernel }\mp@subsup{P}{3}{}=\mp@subsup{T}{3}{}\mathrm{ which has order
```


Amortize the cost

Exponent vector $(1,1,1,0, \ldots, 0)$

We compute ℓ_{i}-isogenies for $\ell_{1}=3$ and $\ell_{2}=5$ and $\ell_{3}=7$:

1. Find a suitable point:

$$
p+1=4 \cdot(3 \cdot 5 \cdot 1 . \ldots)
$$

1.1 Generate a random point T of order $p+1$,
1.2 Compute $T_{1}=\left[\frac{p+1}{3 \cdot 5 \cdot 7}\right] T$ has exact order $3 \cdot 5 \cdot 7$
2. Compute the isogenies:
2.1 3-isogeny:
2.1.1 Compute $P_{1}=[5 \cdot 7] T_{1}$ has order 3
2.1.2 Use P_{1} to construct 3-isogeny φ_{1},
2.1.3 Point $T_{2}=\varphi_{1}\left(T_{1}\right)$ has order 5 on the new curve,
2.2 5-isogeny:
2.2.1 Compute $P_{2}=[7] T_{2}$ has order 5 ,
2.2.2 Construct 5-isogeny φ_{2} with kernel P_{2},
2.2.3 The point $T_{3}=\varphi_{2}\left(T_{2}\right)$ has order z^{2} on the new curve,
2.3 7-isogeny: construct the isogeny φ_{3} with kernel $P_{3}=T_{3}$ which has order \qquad

Towards atomic blocks

Exponent vector ($1,0,1,0, \ldots, 0$)

We compute ℓ_{i}-isogenies for $\ell_{1}=3$ and $\ell_{3}=7$ but no 5-isogeny:

1. Find a suitable point:
1.1 Generate a random point T of order $p+1$,
1.2 Compute $T_{1}=\left[\frac{p+1}{3.5 \cdot 7}\right] T$ has exact order 3.5•7,
2. Compute the isogenies:
2.1 3-isogeny:
2.1.1 Compute $P_{1}=[5 \cdot 7] T_{1}$ has order 3,
2.1.2 Use P_{1} to construct 3-isogeny φ_{1},
2.1.3 Point $T_{2}=\varphi_{1}\left(T_{1}\right)$ has order $5 \cdot 7$ on the new curve,
2.2 No 5-isogeny:
2.2.1 Compute the isogeny as before but throw away the results,
2.2.2 Adjust to code to always compute [5] T_{2},
2.2.3 The point $T_{3}=[5] T_{2}$ has order 7 on the same curve,
2.3 7-isogeny: construct the isogeny φ_{3} with kernel $P_{3}=T_{3}$.

Atomic blocks

Definition (Atomic Blocks, simplified)

Let $I \subset\{1, \ldots, n\}$ be a subset of indices of size k, write $I=\left(i_{1}, \ldots, i_{k}\right)$.
An atomic block of length k is a probabilistic algorithm α_{l} :

- taking inputs A and $\epsilon \in\{0,1\}^{k}$,
- returning $A^{\prime} \in \mathbb{F}_{p}$ such that $E_{A^{\prime}}=\left(\prod_{j=1}^{k} g_{i_{j}}^{\epsilon_{j}}\right) \star E_{A}$,
- the time distribution of α_{l} is independent of ϵ.

Evaluating 3,5, and 7-isogeny

On the previous slide, we saw an atomic block α_{I} with $I=(1,2,3)$ that computes

$$
E_{A^{\prime}}=g_{1}^{\epsilon_{1}} g_{2}^{\epsilon_{2}} g_{3}^{\epsilon_{3}} \star E_{A}
$$

for $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) \in\{0,1\}^{3}$ without leaking timing information about $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$.

Why atomic blocks?

Definition (Atomic Blocks, simplified)
Let $I \subset\{1, \ldots, n\}$ be a subset of indices of size k, write $I=\left(i_{1}, \ldots, i_{k}\right)$.
An atomic block of length k is a probabilistic algorithm α_{l} :

- taking inputs A and $\epsilon \in\{0,1\}^{k}$,
- returning $A^{\prime} \in \mathbb{F}_{p}$ such that $E_{A^{\prime}}=\left(\prod_{j=1}^{k} g_{i_{j}}^{\epsilon_{j}}\right) \star E_{A}$,
- the time distribution of α_{l} is independent of ϵ.

Because:

1. Previous CSIDH implementations are using atomic blocks implicitly;
2. Simpler framework to compute the group action:
2.1 split the computation into atomic blocks independent of the secret;
2.2 make sure each atomic block is constant-time.

Keyspace

Goal

For $\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$, evaluate the group action

$$
E_{A^{\prime}}=\left(\prod_{i=1}^{n} g_{i}^{e_{i}}\right) \star E_{A} .
$$

- Exponent vectors (e_{1}, \ldots, e_{n}) sampled from some keyspace $\mathcal{K} \subset \mathbb{Z}^{n}$;
- Large enough keyspace: $\# \mathcal{K} \approx 2^{256}$;

Examples of keyspaces

1. Original CSIDH [CLM $\left.{ }^{+} 18\right]:\left|e_{i}\right| \leq m$ for all i with $(2 m+1)^{n} \approx 2^{256}$,
2. [MCR19] use $0 \leq e_{i} \leq 10$ for CSIDH-512;
3. [CDRH20] allow the m_{i} to vary for efficiency.

Batching

Take CSIDH-512 prime $p=4 \cdot(3 \cdot 5 \cdots \cdot 373 \cdot 587)-1$.

The batching idea

Consider exponent vector

primes	3	5	7	11	13	17	19	23	29	31	\ldots
exponent vector	1	-2	0	3	-1	1	0	2	-1	0	\ldots

$$
\left|a_{1}\right|+\left|\varepsilon_{2}\right|+\left|e_{3}\right| \leq 3
$$

$$
\mid \text { len }|+| \text { es }\left|+\left|e_{e}\right| \leq 5\right.
$$

New key space

Batching Keyspace
For B batches: For $N \in \mathbb{Z}_{>0}^{B}$ and $m \in \mathbb{Z}_{\geq 0}^{B}$, we define

$$
\mathcal{K}_{N, m}:=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}\left|\sum_{j=1}^{N_{i}}\right| e_{i, j} \mid \leq m_{i} \text { for } 1 \leq i \leq B\right\} .
$$

$$
\begin{aligned}
& \text { Comparison for } 6 \text { primes } \\
& \left(l_{1}, l_{2}, e_{3}, e_{4}, e_{5}, l_{6}\right) \\
& 20 \cdot 20=400 \\
& \left|e_{i}\right| \leq m_{i} \\
& 0 \leq l_{i} \text { filing to compute } \leq 3 \text { in Bats } 1 \\
& (2,2,3,3,3,3) \\
& \text { make sion ja always } \\
& \text { compute the save } \\
& 0 \subseteq e_{1}+e_{2}+e_{3} \leq 3 \rightarrow 20
\end{aligned}
$$

Atomic blocks for batches

Atomic blocks for batches

Suppose we have batches $\{3,5,7\},\{11,13,17\}, \ldots$. And we want to compute one 5 -isogeny and one 11 -isogeny, i.e. exponent vector ($0,1,0,1,0,0,0, \ldots$)

Find a suitable point:

Generate a random point T of order $p+1$
1.2 Compute $T_{1}=\left|\frac{p+1}{(3 \cdot 5 \cdot 7)(11 \cdot 13 \cdot 17)}\right| T$ has order
2. Compute the isogenies:

Atomic blocks for batches

Atomic blocks for batches

Suppose we have batches $\{3,5,7\},\{11,13,17\}, \ldots$ And we want to compute one 5 -isogeny and one 11-isogeny, i.e. exponent vector ($0,1,0,1,0,0,0, \ldots$)

1. Find a suitable point:
1.1 Generate a random point T of order $p+1$,
1.2 Compute $T_{1}=\left[\frac{p+1}{(3 \cdot 5 \cdot 7)(11 \cdot 13 \cdot 17)}\right] T$ has order (3.5 • 7)(11•13•17).
2. Compute the isogenies:
$2.1\{3,5,7\}$-isogeny:
2.1.1 Compute $P_{1}=[(11 \cdot 13 \cdot 17)] T_{1}$ has order (3.5 7),
2.1.2 Use [3.7] P_{1} of order 5 to construct 5 -isogeny φ_{1},
2.1.3 Point $T_{2}=[3 \cdot 7] \varphi_{1}\left(T_{1}\right)$ has order $11 \cdot 13 \cdot 17$ on the new curve,
2.2 \{11, 13, 17\}-isogeny:
2.2.1 Compute $P_{2}=[13 \cdot 17] T_{2}$ has order 11,
2.2.2 Construct 11-isogeny φ_{2} with kernel P_{2}.

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch $\{11,13,17\}$

Compute the 11-isogeny

1. enumerate the multiples $[i] P$ of the point P for $i \in S$, with $S=\{1,2, \ldots, 5\}$
2. construct $h(X)=\prod_{i=1}^{5}(x-x([i] P))$,
3. Compute the coefficient A^{\prime} from $h(X)$.

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch $\{11,13,17\}$

Compute the 1113 -isogeny

1. enumerate the multiples $[i] P$ of the point P for $i \in S$, with $S=\{1,2, \ldots, 5,6\}$
2. construct $h(X)=\prod_{i=1}^{5}(x-x([i] P)) \cdot(x-x([6] P))$,
3. Compute the coefficient A^{\prime} from $h(X)$.

Matryoskha isogeny

How to construct the isogeny with the same code for all primes in the batch:

Matryoshka Isogeny for the batch $\{11,13,17\}$

Compute the 111317 -isogeny

1. enumerate the multiples $[i] P$ of the point P for $i \in S$, with $S=\{1,2, \ldots, 5,6,7,8\}$
2. construct $h(X)=\prod_{i=1}^{5}(x-x([i] P)) \cdot(x-x([6] P)) \cdot(x-x([7] P))(x-x([8] P))$,
3. Compute the coefficient A^{\prime} from $h(X)$.

Matryoshka isogenies

Matryoshka isogeny

- Compute the isogeny for any prime in the batch with the same code
- at the cost of computing isogeny for the largest prime,
- requires using dummy computations.

Known for Vélu formulas [BLMP19].
New for $\sqrt{ }$ élu from [BDFLS20], newly used for batching.

Matryoshka for vêlu

The $\sqrt{ }$ élu polynomial
Want to evaluate

$$
h(X)=\prod_{i \in S}(x-x([i] P))
$$

for $S=\{1,3, \ldots, \ell-2\}$

Visual explanation for 29 and 31

1	9	17	25
3	11	19	27
5	13	21	
7	15	23	

Selection of the parameters

Evaluation cost function

Greedy algorithm to find efficient batching:

- For every batch configuration (number of batches, bounds of each batch), we can estimate the cost of the group action evaluation.
- Adaptively change batch configuration to find one with smaller cost (and large enough keyspace).

batch	size	primes	bound
1	2	3,5	10
2	3	$7,11,13$	14
3	4	$17,19,23,29$	16
4	4	$47,53,59,61,67$	17
5	5	$71,73,79,83,89$	17
6	5	$97,101,103,107,109,113$	17
7	6	$127,131,137,139,149,151,157$	18
8	7	$163,167,173,179,181,191,193$	18
9	7	587	
10	8	$197,199,211,223,227,229,233,239$	18
11	8	$241,251,257,263,269,271,277,281$	18
12	6	$283,293,307,311,313,317$	13
13	8	$331,337,347,349,353,359,367,373$	13
14	1	587	

valgrind constant time verification

Valgrind

Checking for constant-time

- We "poison" the secret data: declare undefined;
- valgrind will check if the undefined data corrupts branches or indices.

Speedups, comparison to previous works

pub	priv	DH	Mcyc	\mathbf{M}	\mathbf{S}	\mathbf{a}	$1,1,0$	$1,0.8,0.05$	
512	220	1	89.11	228780	82165	346798	310945	311852	new
512	220	1	190.92	447000	128000	626000	575000	580700	[CCJR20]
512	220	2	93.23	238538	87154	361964	325692	326359	new
512	256	1	125.53	321207	116798	482311	438006	438762	new
512	256	1	-	624000	165000	893000	789000	800650	[ACR20]
512	256	2	129.64	330966	121787	497476	452752	453269	new
512	256	2	218.42	665876	189377	691231	855253	851939	[CDRH20]
512	256	2	238.51	632444	209310	704576	841754	835121	[HLKA20]
512	256	2	239.00	657000	210000	691000	867000	859550	[CCC ${ }^{+}$19]
512	256	2	-	732966	243838	680801	976804	962076	[OAYT19]
512	256	2	395.00	1054000	410000	1053000	1464000	1434650	[MCR19]
1024	256	1	469.52	287739	87944	486764	375683	382432	new
1024	256	1	-	552000	133000	924000	685000	704600	[ACR20]
1024	256	2	511.19	310154	99371	521400	409525	415721	new

Table: pub: size of p; priv: size of the keyspace; DH 1: group action evaluation, DH 2: group action evaluation and public key validation; Mcyc millions of cycles on a 3GHz Intel Xeon E3-1220 v5 (Skylake) CPU with Turbo Boost disabled; "M" multiplications; " S " squarings; "a" additions; "1, 1, 0 " and " $1,0.8,0.05$ " combinations of \mathbf{M}, \mathbf{S}, and \mathbf{a}.

Summary

CTIDH

- New keyspace for CSIDH,
- New constant-time algorithm to evaluate the group action in CSIDH,
- Formalization of atomic blocks to compute the isogeny group action,
- constant-time verification using valgrind,
- speed records,

Find the article and the code at
https://ctidh.isogeny.org/

References I

Rora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez. On new Vélu's formulae and their applications to CSIDH and B-SIDH constant-time implementations, 2020.
https://eprint.iacr.org/2020/1109.
围 Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of isogenies of large prime degree, 2020.
https://eprint.iacr.org/2020/341.
围 Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies, 2019. https://eprint.iacr.org/2018/1059.

References II

围 Daniel Cervantes－Vázquez，Mathilde Chenu，Jesús－Javier Chi－Domínguez，Luca De Feo，Francisco Rodríguez－Henríquez，and Benjamin Smith． Stronger and faster side－channel protections for CSIDH， 2019.
https：／／eprint．iacr．org／2019／837．
遇 Jorge Chávez－Saab，Jesús－Javier Chi－Domínguez，Samuel Jaques，and Francisco Rodríguez－Henríquez．
The SQALE of CSIDH：square－root Vélu quantum－resistant isogeny action with low exponents， 2020.
https：／／eprint．iacr．org／2020／1520．
圆 Jesús－Javier Chi－Domínguez and Francisco Rodríguez－Henríquez． Optimal strategies for CSIDH， 2020.

```
https://eprint.iacr.org/2020/417.
```


References III

Wouter Castryck，Tanja Lange，Chloe Martindale，Lorenz Panny，and Joost Renes． CSIDH：an efficient post－quantum commutative group action， 2018.
https：／／eprint．iacr．org／2018／383．
围 Aaron Hutchinson，Jason T．LeGrow，Brian Koziel，and Reza Azarderakhsh． Further optimizations of CSIDH：A systematic approach to efficient strategies， permutations，and bound vectors， 2020.
https：／／eprint．iacr．org／2019／1121．
（ Michael Meyer，Fabio Campos，and Steffen Reith．
On Lions and Elligators：An efficient constant－time implementation of CSIDH， 2019.
https：／／eprint．iacr．org／2018／1198．
國 Hiroshi Onuki，Yusuke Aikawa，Tsutomu Yamazaki，and Tsuyoshi Takagi． （Short paper）A faster constant－time algorithm of CSIDH keeping two points， 2019. https：／／eprint．iacr．org／2019／353．

References IV

围 Jacques Vélu.
Isogénies entre courbes elliptiques, 1971.
https://gallica.bnf.fr/ark:/12148/cb34416987n/date.

